JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 2, May 2012

ON AP-HENSTOCK-STIELTJES INTEGRAL OF INTERVAL-VALUED FUNCTIONS

Gwang Sik Eun*, Ju Han Yoon**, Jae Myung Park***, and Deok Ho Lee****

ABSTRACT. In this paper we introduce the interval-valued AP-Henstock-Stieltjes integral and investigate some properties of the these integrals.

1. Introduction and preliminaries

As it is well known, the Henstock integral for a real function was first defined by Henstock [1] in 1963. The Henstock integral is more powerful and simpler than the Lebesgue, Feynman integrals.

In 2000, Congxin Wu and Zengtai Gong introduced the concept of the Henstock integrals of interval-valued functions and fuzzy-number-valued functions and obtained some of its properties([7]).

In this paper we introduce the concept of the AP-Henstock-Stieltjes integral of interval-valued function and investigate some of its properties.

A Henstock partition of [a, b] is a finite collection $P = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ such that $\{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is a non-overlapping family of subintervals of [a, b] covering [a, b] and $t_i \in [c_i, d_i]$ for each $1 \leq i \leq n$. A gauge on [a, b] is a function $\delta : [a, b] \to (0, \infty)$. A Henstock partition $P = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is subordinate to a gauge δ if $[c_i, d_i] \subset (t_i - \delta(t_i), t_i + \delta(t_i))$ for each $1 \leq i \leq n$.

Let α be an increasing function on [a, b]. A function $f : [a, b] \to R$ is said to be Henstock-Stieltjes integrable to $L \in R$ with respect to α on [a, b] if for every $\epsilon > 0$ there exists a positive function δ on [a, b] such

Received February 02, 2012; Accepted April 17, 2012.

²⁰¹⁰ Mathematics Subject Classification: Primary 12A34, 56B34; Secondary 78C34.

Key words and phrases: fuzzy number, AP-Henstock-Stieltjes integral.

Correspondence should be addressed to Jae Myung Park, parkjm@cnu.ac.kr

^{*}This work was supported by the research grant of the Chungbuk National University in 2011.

that $|\sum_{i=1}^{n} f(t_i)(\alpha(d_i) - \alpha(c_i)) - L| < \epsilon$ whenever $P = \{([c_i, d_i], t_i) : 1 \le i \le n\}$ is a Henstock partition of [a, b] subordinate to δ . We write $(H) \int_a^b f(x) d\alpha = L$ and $f \in H_{\alpha}[a, b]$. The function f is Henstock-Stieltjes integrable with respect to α on a set $E \subset [a, b]$ if f_{χ_E} is Henstock-Stieltjes integrable with respect to α on [a, b] where χ_E denotes the characteristic function of E.

DEFINITION 1.1. Let $I_R = \{I = [I^-, I^+] \text{ is the closed bounded interval on the real } R\}$, where $I^- = \min\{x : x \in I\}$, $I^+ = \max\{x : x \in I\}$. For $A, B, C \in I_R$, we define $A \leq B$ iff $A^- \leq B^-$ and $A^+ \leq B^+$, A + B = C iff $A^- + B^- = C^-$ and $A^+ + B^+ = C^+$, and $AB = \{ab : a \in A, b \in B\}$, where $(AB)^- = \min\{A^-B^-, A^-B^+, A^+B^-, A^+B^+\}$ and $(AB)^+ = \max\{A^-B^-, A^-B^+, A^+B^-, A^+B^+\}$. Define $d(A, B) = \max\{|A^- - B^-|, |A^+ - B^+|\}$ as the distance between A and B.

DEFINITION 1.2. ([7]). Let α be an increasing function on [a, b]. A interval-valued function $F : [a, b] \to I_R$ is Henstock-Stieltjes integrable to $I_0 \in I_R$ with respect to α on [a, b] if for every $\epsilon > 0$ there exists a positive function δ such that

$$d(\sum_{i=1}^{n} F(t_i)(\alpha(d_i) - \alpha(c_i)), \ I_0) < \epsilon$$

whenever $P = \{([c_i, d_i], t_i) : 1 \le i \le n\}$ is a Henstock partition of [a,b] subordinate to δ . We write $(IH) \int_a^b F(x) d\alpha = I_0$ and $F \in IH_\alpha[a, b]$. The interval-valued function F is Henstock-Stieltjes integrable with respect to α on a set $E \subset [a, b]$ if F_{χ_E} is Henstock-Stieltjes integrable with respect to α on [a, b] where χ_E denotes the characteristic function of E.

2. The interval-valued AP-Henstock-Stieltjes integral

In this section, we will define the interval-valued AP-Henstock-Stieltjes integral which is an extention of the real-valued Henstock-Stieltjes integral and will study some properties of its integral.

Let E be a measurable set and let c be a real number. The density of E at c is defined by

$$d_c E = \lim_{h \to 0+} \frac{\mu(E \cap (c-h, c+h))}{2h},$$

provided the limit exists. The point c is called a point of density of E if $d_c E = 1$. The E^d represents the set of all $x \in E$ such that x is a point of density of E.

293

An approximate neighborhood (or ad-nbd) of $x \in [a, b]$ is a measurable set $S_x \subset [a, b]$ containing x as a point of density. For every $x \in E \subset [a, b]$, choose an ad-nbd $S_x \subset [a, b]$ of x. then we say that $S = \{S_x : x \in E\}$ is a choice on E. A tagged interval ([c, d], x) is said to fine to the choice $S = \{S_x\}$ if $c, d \in S_x$. Let $P = \{([c_i, d_i], x_i)\}_{1 \leq i \leq n}$ be a finite collection of non-overlapping tagged intervals. If $([c_i, d_i], x_i)$ is fine to a choice Sfor each i, then we say that P is S-fine. Let $E \subset [a, b]$. If P is S-fine and each $x_i \in E$, then P is called S-fine on E. If P is S-fine and $[a, b] = \bigcup_{i=1}^n [a_i, b_i]$, then we say that P is S-fine partition of [a, b].

DEFINITION 2.1. Let α be an increasing function on [a, b]. A intervalvalued function $F : [a, b] \to I_R$ is AP-Henstock-Stieltjes integrable to $I_0 \in I_R$ with respect to α on [a, b] if for every $\epsilon > 0$ there exists a choice S on [a, b] such that

$$d(\sum_{i=1}^{n} F(t_i)(\alpha(d_i) - \alpha(c_i)), \ I_0) < \epsilon$$

whenever $P = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is a *S*-fine partition of [a, b]. We write $(APIH) \int_a^b F(x) d\alpha = I_0$ and $F \in APIH_\alpha[a, b]$. The intervalvalued function *F* is AP-Henstock-Stieltjes integrable with respect to α on a set $E \subset [a, b]$ if $F\chi_E$ is AP-Henstock-Stieltjes integrable with respect to α on [a, b] where χ_E denotes the characteristic function of E.

REMARK 2.2. It is clear, if $F(x) = F^{-}(x) = F^{+}(x)$ for all $x \in [a, b]$, then Definition 2.1 implies the real-valued AP-Henstock-Stieltjes integral.

REMARK 2.3. If $F \in APIH_{\alpha}[a, b]$, then the integral is unique.

THEOREM 2.4. Let α be an increasing function on [a, b]. A intervalvalued function $F : [a, b] \to I_R$ is AP-Henstock-Stieltjes integrable with respect to α on [a, b] if and only if $F^-, F^+ \in APH_{\alpha}[a, b]$ and $(APIH) \int_a^b F d\alpha = [(APH) \int_a^b F^- d\alpha, (APH) \int_a^b F^+ d\alpha]$, where $F(x) = [F^-(x), F^+(x)]$.

Proof. Let $F \in APIH_{\alpha}[a, b]$. Then there exists an interval $I_0 = [I_0^-, I_0^+]$ with the property that for each $\epsilon > 0$ there exists a choice S on [a, b] such that

$$d(\sum_{i=1}^{n} F(t_i)(\alpha(d_i) - \alpha(c_i)), I_0) < \epsilon$$

whenever $P = \{([c_i, d_i], t_i) : 1 \le i \le n\}$ is S -fine partition of [a, b]. Since $\alpha(d_i) - \alpha(c_i) \ge 0$ for $1 \le i \le n$, we have

$$d(\sum_{i=1}^{n} F(t_i)(\alpha(d_i) - \alpha(c_i)), I_0)$$

= $max \left\{ |(\sum_{i=1}^{n} F(t_i)(\alpha(d_i) - \alpha(c_i))^- - I_0^-|, |(\sum_{i=1}^{n} F(t_i)(\alpha(d_i) - \alpha(c_i))^+ - I_0^+|) \right\}$
= $max \left\{ |(\sum_{i=1}^{n} F^-(t_i)(\alpha(d_i) - \alpha(c_i)) - I_0^-|, |(\sum_{i=1}^{n} F^+(t_i)(\alpha(d_i) - \alpha(c_i)) - I_0^+|) \right\}.$

Hence $|(\sum_{i=1}^{n} F^{-}(t_i)(\alpha(d_i) - \alpha(c_i)) - I_0^{-}| < \epsilon, |(\sum_{i=1}^{n} F^{+}(t_i)(\alpha(d_i) - \alpha(c_i)) - I_0^{+}| < \epsilon$ whenever $P = \{([c_i, d_i], t_i) : 1 \le i \le n\}$ is S -fine partition of [a, b]. Thus $F^{-}, F^{+} \in APH_{\alpha}[a, b]$ and $(APIH) \int_a^b F d\alpha = [(APH) \int_a^b F^{-} d\alpha, (APH) \int_a^b F^{+} d\alpha].$

Conversely, let $F^-, F^+ \in APH_{\alpha}[a, b]$. Then there exists $H_1, H_2 \in R$ with the property that given $\epsilon > 0$ there exists a choice S on [a,b] such that

$$|\sum_{i=1}^{n} F^{-}(t_{i})(\alpha(d_{i}) - \alpha(c_{i})) - H_{1}| < \epsilon, |\sum_{i=1}^{n} F^{+}(t_{i})(\alpha(d_{i}) - \alpha(c_{i})) - H_{2}| < \epsilon$$

whenever $P = \{([c_i, d_i], t_i) : 1 \le i \le n\}$ is S-fine partition on [a, b]. We define $I_0 = [H_1, H_2]$, then if $P = \{([c_i, d_i], t_i) : 1 \le i \le n\}$ is a S-fine partition of [a, b], we have

$$d(\sum_{i=1}^{n} F(t_i)(\alpha(d_i) - \alpha(c_i)), I_0) < \epsilon.$$

Hence $F : [a, b] \to I_R$ is AP-Henstock-Stieltjes integrable with respect to α on [a, b].

From Theorem 2.4 and the properties of AP-Henstock-Stieltjes integral, we can easily obtain the following theorems .

THEOREM 2.5. Let $F, G \in APIH_{\alpha}[a, b]$ and $\beta, \gamma \in R$. Then

295

(1)
$$\beta F + \gamma G \in APIH_{\alpha}[a, b]$$
 and
 $(APIH) \int_{a}^{b} (\beta F + \gamma G) d\alpha = \beta (APIH) \int_{a}^{b} F d\alpha + \gamma (APIH) \int_{a}^{b} G d\alpha.$
(2) If $F(x) \in C(x)$ as a in $[a, b]$, then $(APIH) \int_{a}^{b} F d\alpha \leq (APIH) \int_{a}^{b} C d\alpha.$

(2) If $F(x) \leq G(x)$ a.e. in [a, b], then $(APIH) \int_{a}^{b} F d\alpha \leq (APIH) \int_{a}^{b} G d\alpha$. THEOREM 2.6. Let $F \in APIH_{\alpha}[a, c]$ and $F \in APIH_{\alpha}[c, b]$.

THEOREM 2.6. Let $F \in APIH_{\alpha}[a, c]$ and $F \in APIH_{\alpha}[c, b]$. Then $F \in APIH_{\alpha}[a, b]$ and $\int_{a}^{b} Fd\alpha = \int_{a}^{c} Fd\alpha + \int_{c}^{b} Fd\alpha$.

THEOREM 2.7. Let $F, G \in APIH_{\alpha}[a, b]$ and d(F, G) is Lebesgue-Stieltjes integrable on [a, b]. Then

$$d((APIH)\int_{a}^{b} F \ d\alpha, (APIH)\int_{a}^{b} G \ d\alpha) \leq (L)\int_{a}^{b} d(F,G) \ d\alpha.$$

Proof. By definition of distance,

$$\begin{split} d((APIH)\int_{a}^{b}Fd\alpha,\ (APIH)\int_{a}^{b}Gd\alpha)\\ &=max(|((APH)\int_{a}^{b}Fd\alpha)^{-}-((APH)\int_{a}^{b}Gd\alpha)^{-}|,\\ |((APH)\int_{a}^{b}Fd\alpha)^{+}-((APH)\int_{a}^{b}Gd\alpha)^{+}|)\\ &=max(|(APH)\int_{a}^{b}(F^{-}-G^{-})d\alpha|,\ |(APH)\int_{a}^{b}(F^{+}-G^{+})d\alpha|)\\ &\leq max((L)\int_{a}^{b}|F^{-}-G^{-}|d\alpha,\ (L)\int_{a}^{b}|F^{+}-G^{+}|d\alpha)\\ &\leq (L)\int_{a}^{b}d(F,G)d\alpha. \end{split}$$

3. The AP-Henstock-Stieltjes integrals of fuzzy-number-valued functions

DEFINITION 3.1. ([5]). Let $\tilde{A} \in F(R)$ be a fuzzy subset on R. If for any $\lambda \in [0,1], A_{\lambda} = [A_{\lambda}^{-}, A_{\lambda}^{+}]$ and $A_{1} \neq \phi$, where $A_{\lambda} = \{x : \tilde{A}(x) \geq \lambda\}$, then \tilde{A} is called a fuzzy number.

Let \tilde{R} denote the set of all fuzzy numbers .

DEFINITION 3.2. ([4],[5]). Let $\tilde{A}, \tilde{B} \in \tilde{R}$, we define $\tilde{A} \leq \tilde{B}$ iff $A_{\lambda} \leq B_{\lambda}$ for all $\lambda \in (0, 1], \tilde{A} + \tilde{B} = \tilde{C}$ iff $A_{\lambda} + B_{\lambda} = C_{\lambda}$ for any $\lambda \in (0, 1], \tilde{A} \cdot \tilde{B} = \tilde{D}$ iff $A_{\lambda} \cdot B_{\lambda} = D_{\lambda}$ for any $\lambda \in (0, 1]$.

LEMMA 3.3. ([1]). If a mapping $H : [0,1] \to I_R, \lambda \to H(\lambda) = [m_{\lambda}, n_{\lambda}]$, satisfies $[m_{\lambda_1}, n_{\lambda_1}] \supset [m_{\lambda_2}, n_{\lambda_2}]$ when $\lambda_1 < \lambda_2$, then

$$\tilde{A} := \bigcup_{\lambda \in (0,1]} \lambda H(\lambda) \in \tilde{R}$$

and

$$A_{\lambda} = \bigcap_{n=1}^{\infty} H(\lambda_n),$$

where $\lambda_n = [1 - \frac{1}{n+1}]\lambda$.

DEFINITION 3.4. Let α be an increasing function on [a, b] and let $\tilde{F}: [a, b] \to \tilde{R}$. If the interval- valued function $F_{\lambda}(x) = [F_{\lambda}^{-}(x), F_{\lambda}^{+}(x)]$ is AP-Henstock integrable on [a, b] with respect to α for any $\lambda \in (0, 1]$, then we say that $\tilde{F}(x)$ is AP- Henstock integrable with respect to α on [a, b] and the integrable value is defined by

$$\begin{split} (APFH) \int_{a}^{b} \tilde{F}(x) d\alpha &:= \bigcup_{\lambda \in (0,1]} \lambda (IH) \int_{a}^{b} F_{\lambda}(x) d\alpha \\ &= \bigcup_{\lambda \in (0,1]} \lambda [(H) \int_{a}^{b} F_{\lambda}^{-} d\alpha, (H) \int_{a}^{b} F_{\lambda}^{+} d\alpha]. \end{split}$$

For brevity, we write $\tilde{F} \in APFH_{\alpha}[a, b]$.

THEOREM 3.5. $\tilde{F} \in APFH_{\alpha}[a, b]$, then $(APFH) \int_{a}^{b} \tilde{F}(x) d\alpha \in \tilde{R}$ and

$$[(APFH)\int_{a}^{b}\tilde{F}(x)d\alpha]_{\lambda} = \bigcap_{n=1}^{\infty}(APIH)\int_{a}^{b}F_{\lambda_{n}}(x)d\alpha$$

where $\lambda_n = [1 - \frac{1}{n+1}]\lambda$.

Proof. Let $H: (0,1] \to I_R$ be defined by $H(\lambda) = [(H) \int_a^b F_{\lambda}^-(x) d\alpha$, $(H) \int_a^b F_{\lambda}^+(x) d\alpha$]. Since $F_{\lambda}^-(x)$ and $F_{\lambda}^+(x)$ are increasing and decreasing on λ , respectively, therefore, when $0 < \lambda_1 \le \lambda_2 \le 1$, we have $F_{\lambda_1}^-(x) \le 1$

$$\begin{split} F_{\lambda_2}^-(x), F_{\lambda_1}^+(x) &\geq F_{\lambda_2}^+(x), \text{ on } [a,b]. \text{ Thus from Theorem 2.5, we have} \\ &[(H)\int_a^b F_{\lambda_1}^-(x)d\alpha, (H)\int_a^b F_{\lambda_1}^+(x)d\alpha] \\ &\supset [(H)\int_a^b F_{\lambda_2}^-(x)d\alpha, (H)\int_a^b F_{\lambda_2}^+(x)d\alpha]. \end{split}$$

Using Theorem 2.5 and Lemma 3.3 we obtain

$$(APFH) \int_{a}^{b} \tilde{F}(x) d\alpha$$
$$:= \bigcup_{\lambda \in (0,1]} \lambda[(H) \int_{a}^{b} F_{\lambda}^{-}(x) d\alpha, (H) \int_{a}^{b} F_{\lambda}^{+}(x) d\alpha] \in \tilde{R}$$

and for all $\lambda \in (0, 1]$,

$$[(APFH)\int_{a}^{b}\tilde{F}(x)d\alpha]_{\lambda} = \bigcap_{n=1}^{\infty}(APIH)\int_{a}^{b}F_{\lambda_{n}}(x)d\alpha,$$

where $\lambda_n = [1 - \frac{1}{n+1}]\lambda$.

Using Theorem 3.5 and the properties of (APIH) integral, we can obtain the properties of (APFH) integral. For examples, the linear, monotones and interval additive properties of (APFH) integral.

References

- L. Chengzhong, Extension of the integral of interval-valued function and the integral of fuzzy-valued function, Fuzzy Math. 3 (1983), 45-52.
- [2] R. Henstock, Theory of integration, Butterworths, London, 1963.
- [3] P. Y. Lee, Lanzhou Lectures in Henstock Integration, World Scientific, 1989.
- [4] M. Matloka, On fuzzy integral, Pro. Polish Symp., Interval and Fuzzy Math. '86, Poznan, 95-101, 1989.
- [5] S. Nada, On integration of fuzzy mapping, Fuzzy Sets and Systems 32 (2000), 377-392.
- [6] J. H. Yoon, J. M. Park, Y. K. Kim, and B. M. Kim, *The AP-Henstock Extension of the Dunford and Pettis Integrals*, Journal of the Chungcheoug Math. Soc. 23 (2010), no. 4, 799-844.
- [7] C. Wu, Z. Gong, On Henstock integrals of interval-valued functions and fuzzyvalued functions, Fuzzy Sets and Systems 115 (2000), 377-392.

*

298

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: eungs@cbnu.ac.kr

**

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: yoonjh@cbnu.ac.kr

Department of Mathematics Chungnam University Daejeon 305-764, Republic of Korea *E-mail*: parkjm@cnu.ac.kr

Department of Mathematics Education Kongju National University Kongju 314-701, Republic of Korea *E-mail*: Dhlee@kongju.ac.kr